

The Cadmus Group, Inc.
Opinion Dynamics Corporation
July 2012

EO Collaborative – Joint Workgroup MeetingJuly 17, 2012

Overview

- Background
- Methodology
 - Metering Protocol
 - Sampling
 - Analysis
- Findings
- Application

Background

- Consumers Energy and DTE Energy partnered on joint metering effort of recycled appliances
- Over 200 refrigerators and freezers metered throughout the state
- Preliminary results were presented to EWG last year

Background

- Metering was conducted in Consumers and DTE's territory
 - Final values based on characteristics unique to each utility
- Wave 1: Summer 2010 (Consumers and DTE)
- Wave 2: Winter 2011 (DTE only)
- Wave 3: Winter 2012 (Consumers only)

Metering Timeline vs. Participation

Metering Protocol

- In situ metering collects data on appliances operating in "real-world" context
 - Captures environmental factors, usage patterns, contents, etc.
- Each appliance was metered for 10 to 14 days in the participant's home.
- Five meters installed:

Metering Equipment	Data
HOBO UA-002 Temperature Gauge	Internal Temperature
HOBO U9-002 Light Sensor	Frequency/Duration Door Openings
HOBO U12-012 External Data Logger	Ambient Temperature/Humidity
HOBO CTV-A	Current
Watts up? Pro ES Power Meter	Energy Consumption

In Situ Metering

 Traditionally, program savings were estimated using DOE lab testing

- More recently, there has been a move toward in-situ metering
 - 2006-08 CPUC Residential Evaluation first to use solely *in-situ* values

Comparison to Other Methods

DOE-Protocol Testing:

- Metering of appliances under controlled environment (constant temperature, empty cabinet, no door openings).
- Good for relative efficiency, but tends to overestimate nominal energy consumption.

Billing Analysis:

- Quasi-experimental design using billing data from experimental and control group.
- Problems with replacement units.

Sampling

Sampling was done by configuration and use

Anniana Tura		-4	Proportion of Appliance Type	
Appliance Type	Cnara	cteristic	Overall Participant Population	Metering Sample
		Upright	66%	60%
Freezer		Chest	34%	40%
		Top Freezer	67%	70%
		Side-by-Side	23%	21%
		Single Door	7%	8%
	Configuration	Bottom Freezer	4%	3%
		Primary	55%	23%
Refrigerator	Use	Secondary	45%	77%

- 237 units used in final analysis
- Primary units were under-sampled due to changes in units being picked up by program
 - Variables controlled for in model as well

Analysis: Unit Energy Savings

- Regression models used to estimate daily consumption as a function of:
 - Age/vintage
 - Size
 - Configuration
 - Usage type
 - Location
- Modeling effort sought to balance simplicity and explanatory power

Analysis: Unit Energy Savings

- Opted for a single equation model
 - Accounts for weather using average values
 - Allows for easily interpretable results
 - Can be used as a single algorithm

 Almost all variables already tracked by program implementer

Analysis: Demand Savings

Average Demand:

$$Average \ kW = \frac{Average \ kWh/day}{24 \ hrs./day}$$

Summer Demand:

$$Summer\ kW = Average\ kW * CF$$

$$CF = \frac{Summer \, kWh/day}{Average \, kWh/day}$$

Findings: Refrigerator Regression

• n: 183

• R^2 : 0.40

• Adj. R²: 0.37

Independent Variables	Coefficient	p-Value*	VIF
Intercept	-1.608	0.21	0.0
Age (years)	0.045	0.10	1.3
Dummy: Manufactured Pre-1993	1.399	0.02	1.4
Size (ft.3)	0.115	0.12	1.9
Dummy: Single Door	-1.803	0.01	1.5
Dummy: Side-by-Side	1.571	0.02	1.4
Dummy: Primary	0.830	0.25	1.2
CDDs	0.007	0.84	1.2

^{*}All p-values calculated using White's standard errors

Findings: Freezer Regression

• n: 54

• R²: 0.78

• Adj. R²: 0.76

Independent Variables	Coefficient	p-Value*	VIF
Intercept	-2.297	0.00	0.0
Age (years)	0.067	<.0001	1.1
Dummy: Manufactured Pre-1993	0.401	0.21	1.1
Size (ft.3)	0.150	<.0001	1.3
Dummy: Chest	0.854	0.00	1.2
CDDs	0.046	0.07	1.4

^{*}All p-values calculated using White's standard errors

Findings: Extrapolation

Using cumulative participation values:

Appliance Type	Average Annual Consumption (kWh/year)	Relative Precision at 90% Confidence
Refrigerators	1,264	±9%
Freezers	1,107	±6%

Appliance Type	Average Demand (kW)	Average Summer Demand (kW)
Refrigerators	0.144	0.145
Freezers	0.126	0.133

Comparison to MEMD Values

 MEMD values are the mean of five evaluations from 1996 to 2006

Evaluation	Refrigerator	Freezer
SCE 1996	2,148	2,058
California 2002	1,946	1,662
California 2004/5	1,732	1,263
Conn. 2004	1,383	1,181
Pac. Corp 2005/6	1,149	1,590
Average kWh	1,672	1,551
Average kW	0.191	0.177

Comparison to Current Values

- Differences from MEMD consumption and demand estimates can be explained by two major factors:
 - Many of these evaluations are older, and thus more units were manufactured prior to NAECA standard
 - All of these evaluations relied on DOE testing protocols

Savings Type	MEMD	Meter Results	Difference
Refrigerator - Energy	1,672	1,264	24%
Refrigerator - Demand	0.191	0.145	24%
Freezer - Energy	1,551	1,107	29%
Freezer - Demand	0.177	0.133	25%

Application

- In cases where evaluations are not being done, deemed values could be used
 - Based on a large sample of program participants
- Future evaluations can use algorithms to update savings values
 - Data tracked in detail by program implementers

Deemed Values

Advantages:

- Simplicity
- Little risk of errors for program tracking
- Most general/widely applicable

Disadvantages:

- Doesn't track changes in program population
- Doesn't capture variation between programs

Algorithm Approach

Advantages:

- Represents program-specific savings
- "Real-time" feedback for program design

Disadvantages

- Opportunity for error
- Data tracking issues: may complicate the certification process or data leading up to it
- Coordination with implementation contractor

Drivers of Consumption Over Time

Drivers of Consumption Over Time

Drivers of Consumption Over Time

Unit Savings: Deemed vs. Algorithm

Total Savings: Deemed vs. Algorithm

Recommendation

- Use deemed values as default
- Review inputs on a bi-annual basis
 - If significant differences, update values
- If particularly large changes, further metering may be warranted

